
Alias Analysis in LLVM

Given two pointers:

Do they always point at different memory?

Do they always point at the same memory?
(miss a CSE? ;-))

What is Alias Analysis?

Alias Analysis & Dependence Analysis

for (size_t i = 1; i < n; ++i) {

 p[i] = p[i - 1] * 3;
}

LLVM's Alias Anslysis API

Location, Location, Location

Pointer
Size

TBAA tag

Sizes are given in address units (bytes usually)

alias
- 2 Locations

getModRefInfo and getModRefBehavior

pointsToConstantMemory

AliasAnalysis.h basics

NoAlias = can reorder*
MustAlias = redundant load, dead store

MayAlias = I don't know

PartialAlias = Inexact overlap
(Perhaps this should be renamed?)

The language of alias

noalias

arguments *and* return values
tail

nocapture

readonly, readnone
getelementptr (aka gep)

gep(p, 0) vs gep(0, p)

inttoptr, ptrtoint

no guessing!

LLVM IR features

A tale of two pointer arithmetics

%p = gep %base, %n
%x = inttoptr %base
%y = add %x, %n

%p = ptrtoint %y

LLVM IR non-features

Union types
Typed memory

restrict anywhere but function arguments

restrict on a struct member

Real multi-dimensional array access
Multiple "variables" in one allocation

AA Implementations

BasicAA
SCEV-AA?

TBAA
Globals ModRef

etc.

The theory: Multiple chained analyses

NoAlias or MustAlias = best possible answer

MayAlias = I don't know, keep looking

PartialAlias = stop looking

Implementation infrastructure

%a = getelementptr @Z, 10

%b = bitcast %a to float*

%c = select i1 %p, %b, %x

%d = phi [... %c ...]

%e = getelementptr %d, %n

Start at the bottom, find the identified object
(s)

BasicAA

An interesting concept hack.
BasicAA can now do most of this.

Also, how do we keep the ScalarEvolution
analysis up to date?

SCEV-AA

Globals Mod/Ref

Global Variables are Values, with use lists.
Use-list escape analysis
Check for read-only, etc.

NoAA

Says "I don't know" to all queries.

What about Andersen's?

stateful alias analyses

compile time

Pointers to different "types" don't alias.

TBAA

TBAA: "Tibah", from the Vulcan

T'PAU
just kidding

Introduced in C89, refined in C99

C++ inherited the C89 version and made its
own adaptations.

 int *a = ???;
float *b = ???;

TBAA (in C)

It's all about the lvalues

Practical TBAA

TBAA in C, the dark side

void foo(int *x, float *y) {

*x = 1;

int i = *x;

*y = 1.0f;

float f = *y;

use(i, f);

}

?

TBAA in C++?

For C++ types, the same problems as C

However, virtual classes are more constrained!

Maybe?

Memory has no types.

Separate mechanism from policy.

Use chaining to be conservative about
punning.

Support cross-language inlining.

TBAA in LLVM

A Type Tree

Ancestors, Roots

Regular C

char

intfloat

 Crazy C

intfloat

A Type DAG?

struct MyClass {
int foo;
float bar;

};

Base

char

intfloat

MyClass

How about a more precise DAG...

struct MyClass {
int foo;
float bar;

};

Base

char

intfloat

MyClass

MyClass::bar MyClass::foo

Alternatives

Type DAG?
Instructions get multiple tags?
A separate datastructure for aggregates?

Type punning

int x;

*(float *)&x = 2.3f;

x = 4;

TBAA says NoAlias

BasicAA says MustAlias

Questions?

